迭代容积平方根粒子滤波  被引量:2

Iterated cubature square root particle filter

在线阅读下载全文

作  者:王秋平[1] 李凤[1] 马春林 韩磊[1] 

机构地区:[1]东北电力大学自动化工学院,吉林吉林132012 [2]浙江浙能台州第二发电有限责任公司,浙江台州318000

出  处:《计算机应用研究》2014年第7期2021-2023,2026,共4页Application Research of Computers

摘  要:为解决先验概率作为重要性密度函数因未融入最新的观测信息而造成测量精度低的问题,提出了迭代容积粒子滤波。此算法采用Gauss-Newton迭代和容积卡尔曼滤波设计重要性密度函数,在迭代过程中不断修改新息的方差和协方差,使重要性密度函数更接近后验概率密度。此外,为确保状态协方差矩阵的正定性,采用了平方根滤波的思想,通过正交三角分解来代替每次迭代的矩阵开方操作。仿真实验证明,此算法可以提高滤波精度,适用于对精度要求很高但对运算时间要求不是很高的场合。In order to solve the problem that the transition prior distribution as an importance density function does not include the lastest measuring information and only apply on the place of low precision,this paper proposed new particle filter named iterated cubature particle filter(ICPF). The new algorithm developed the importance density function by Gauss-Newton iterate method and cubature Kalman filter(CKF),the importance density function was more approximate the posterior density function because of improved innovation covariance and cross-covariance in the process of iteration. In addition,to ensure the positive definiteness of the state covariance matrix,it insteaded matrix square root operation in each iteration by orthogonal triangular decomposition for the use square root filtering. The simulation results indicate that the new algorithm can improve the accuracy of filter and is suitable for the situation that pay more attention to accuracy than time.

关 键 词:粒子滤波 迭代 容积 平方根 重要性密度函数 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象