自然数不同因子分解的数目的界  被引量:1

在线阅读下载全文

作  者:曹惠中[1] 

机构地区:[1]山东大学数学系,济南250100

出  处:《科学通报》1993年第2期106-109,共4页Chinese Science Bulletin

摘  要:设f(n)表示分解自然数n(>1)为大于1的整数因子乘积的所有方式的数目,此处不计因子的顺序。并且设f(1)=1。近年来,这个数论函数的上界估计得到不断的改进。1983年Hughes和Shallit证明了f(n)≤2n^(2^(1/2))。1987年陈小夏证明了f(n)≤n。1989年陈文立证明了f(n)≤(1/4)n+1。

关 键 词:标准分解式 自然数 因子分解 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象