检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中理工大学自控系,武汉430074 [2]石油大学应用数学系,山东东营257062
出 处:《应用数学和力学》2001年第6期639-644,共6页Applied Mathematics and Mechanics
基 金:国家自然科学基金!资助项目 ( 79970 0 2 5)
摘 要:Asgeirsson中量定理表明超双曲型方程的Cauchy问题一般是不适定的 ,对Asgeirsson中量定理的推广就有重要意义· 目前关于高阶方程解的中量只有初步探讨 ,尚未得到具体结果 ,本文直接利用Asgeirsson中量定理结果和积分、微分的性质与关系 ,得到了高阶方程解的中量满足广义双轴对称位势方程 ,同时还证明了其逆定理· 利用关于广义双轴对称位势方程正则解的表达式及雅可比多项式的特殊性质 ,得到了高阶方程解的中量公式 ,从而使得关于解的拓展性和适定性的讨论将有可能·For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation has been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.
关 键 词:Assirsson中量定理 广义双轴对称位势方程 雅可比多项式 双曲型 方程 CAUCHY问题 解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229