检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与工程系,哈尔滨150001 [2]哈尔滨工业大学管理学院,哈尔滨150001
出 处:《计算机学报》2001年第9期951-958,共8页Chinese Journal of Computers
基 金:国家自然科学基金 ( 6 99740 13)资助
摘 要:灵敏度分析对于神经网络结构设计具有指导意义 .已有的灵敏度分析方法往往针对特定的激活函数 ,并且对网络输入和权值扰动有严格的限制 .该文采用另一种以 1- e-λx1+e-λx型激活函数的倾斜度作为参数的函数形式逼近激活函数 ,得到了一类神经元的统一的灵敏度解析表达式和网络灵敏度计算算法 .该方法取消了对输入和权值扰动的限制 ,可以研究激活函数倾斜度对网络灵敏度的影响 .计算机模拟试验证明了此方法的正确性 ,并且提出了网络结构设计的几条准则 .Sensitivity analysis is a fundamental issue in the research of neural networks, and provides theoretical instruction for neural network design. The existing approaches to the sensitivity analysis of Multilayer Perceptron usually aim at the network with a specific activation function, and impose too severe limitations on both network input and weight perturbations. So the sensitivity analysis of Multilayer Perceptron is restricted within narrow application range. In this paper, the common characteristic, i.e., the obliquity, is extracted from the sigmoidal activation functions with the form 1-e -λx1+e -λx, and another function with the obliquity characteristic is adopted to approximate the sigmoidal activation function. The approximation function has the form convenient for the computation of sensitivity without introducing additional limitations, and it is used to deduce the sensitivity expression of Multilayer Perceptron instead of the activation function. Based on the stochastic model of Multilayer Perceptron, a universal analytic expression of sensitivity for a single neuron with a class of sigmoidal activation functions is derived. Then we present a bottom-up algorithm to calculate the sensitivity of the whole Multilayer Perceptron layer by layer. Except the approximation of the activation function, the sensitivity expression is derived exactly. So there is no need for us to restrict the input and weight perturbations to be very small in our sensitivity analysis method. Because the obliquity of the sigmoidal activation function is a parameter of the approximation function, the effect of the obliquity of the activation function on the network sensitivity can be analyzed. The result of computer simulation shows that our theoretical result matches the experiment result closely. This also indicates the correctness of our sensitivity analysis approach. Finally, the effects of network parameters on the network sensitivity are investigated; and the parameters include the input perturbation, the weight perturbati
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117