基于小波系数聚类的特征提取分类方法  被引量:12

CLASSIFICATION BASED ON FEATURE EXTRACTION FROM CLUSTER OF WAVELET COEFFICIENTS

在线阅读下载全文

作  者:周维忠[1] 冯心海[1] 孙国基[2] 

机构地区:[1]佛山科学技术学院电子工程系,佛山528000 [2]西安交通大学系统工程研究所,西安710049

出  处:《计算机研究与发展》2001年第8期982-987,共6页Journal of Computer Research and Development

摘  要:神经网络是一种普遍采用的模式分类方法 ,当对样本的抽样数目较大时 ,神经网络结构复杂 ,训练时间激增 ,分类性能下降 ,针对这一问题 ,提出一种基于快速小波变换特征提取的分类方法 .首先对小波系数矩阵的每行进行聚类 ,表达重要频率范围内小波系数矩阵的行有较多的聚类数 ,从而大大减少了神经网络的输入数 ,而同时保留了有用的信息 .特征提取后 ,采用小波系数的能量值作为特征量 ,应用径向基函数网络识别肺发出的各种不同的声音 ,实验证明Neural network is popularly used for pattern recognition. The training time of neural network increases rapidly with increasing large number of samples. It leads to a deterioration in performance of neural network. A classification approach based on fast wavelet transform for feature extraction is presented. The method divides the matrix of computed wavelet coefficients into clusters in every rows. The rows that represent important frequency range have a larger numbers of clusters than rows that represent less important frequency ranges. The input numbers of neural network are decreased, while retaining much information about classified signal. After feature extraction, energy values of wavelet coefficients are chosen as signal features. A radial basic function neural network is developed for classification of different lung sound signals. The effectiveness of this new method has been verified on experiments about recognizing lung sounds.

关 键 词:特征提取 小波变换 径向基函数 神经网络 小波系数 模式分类 声音识别 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象