检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《厦门大学学报(自然科学版)》2001年第6期1184-1190,共7页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金委重点基金 (196310 10 );北京市自然科学基金 (10 12 0 0 4 )资助项目
摘 要:显式获得了第二类华罗庚域的 Bergman核函数 .第二类华罗庚域是指由如下表达式所界定的域 | w1| 2 p1+ | w2 | 2 p2 +… + | wn| 2 pn <det(I - ZZ)这里 ,1/ p1,1/ p2 ,… ,1/ pn-1都是正整数 ,pn 是任意正实数 ,RII(p )是第二类典型域 ,Z∈ RII(p) .关键之处有两点 :1)给出了将此域的任一内点 (W,Z)映为 (W*,0 )的全纯自同构群 ;2 )引进了 semi-Reinhardt域并给出了它的完备规范正交函数系 .The authous get the Bergman kernel in explicit formula for the Hua domain of the second type defined by the following inequality: |w_1|^(2p_1)+|w_2|^(2p_2)+...+|w_n|^(2p_n)<det(I-Z) where, 1/p_1,1/p_2,...,1/p_(n-1) are positive integers, p_n is any positive real number, R_(II)(p) is the classical domain of the second type, Z∈R_(II)(p). There are two key steps: firstly authors get the holomorphic automorphism group for such Hua domain such that the each element of this group maps the inner points (W,Z_0) onto (W~*,0); secondly authors introduce the notion of semi-Reinhardt domain and get its complete orthonormal system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249