检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄晓东[1] 孟庆春[1] 王汉萍[1] 殷波[1]
出 处:《青岛海洋大学学报(自然科学版)》2001年第6期937-942,共6页Journal of Ocean University of Qingdao
基 金:高等学校重点实验室访问学者基金;青岛市科委课题资助
摘 要:该文把增强式学习方法应用于多障碍环境中机器人路径规划 ,并将增强式学习和路径规划相结合 ,通过工作空间势场的自适应优化学习 ,实现机器人的全局路径规划 ,即得到从任何初始位置开始的最优路径。与传统的人工势场方法相比 ,该方法避免了势场中局部极小点所引起的陷阱区域 ,并且所得到的路径具有最优特性。计算机仿真实验结果表明 。In this paper the reinforcement learning to robot path planning in complex environment of multiple obstacles is applied. An adaptive control strategy learning method is proposed. Reinforcement learning is an unsupervised learning method based on the reactive and feedback mechanism. In this paper the reinforcement learning and path planning are combined together. The optimal path from any initial position is obtained by optimizing the global potential field and control rules. Compared with traditional artificial potential field method, this method avoids irrelevant local minimal points, which can make the robot vibrate in a small local area. Furthermore, the path found is optimal. The computer simulation experiment result shows that this learning method can efficiently solve the robot path planning problem in multi obstacle environment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40