检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学航空宇航学院,南京210016
出 处:《南京航空航天大学学报》2001年第6期516-520,共5页Journal of Nanjing University of Aeronautics & Astronautics
基 金:航空科学基金(编号 :99B5 2 0 1 0 );江苏省自然科学基金(编号 :BK991 1 6)资助项目
摘 要:首先由能量原理导出曲梁弯曲问题的控制微分方程 ,在此基础上应用微分求积法原理分别给出了曲梁内点和端点的微分求积方程 ,由此形成曲梁单元的刚度方程 ,从而建立了微分求积曲梁单元 ,并给出了曲梁结构刚度方程的边界条件。通过算例分析 ,得到了微分求积单元法结构离散时应使单元数最少的原则和求解精度与单元长度比基本无关的性质。与有限元方法的结果比较表明 。The governing differential equations for the bending of a curved beam are derived first by using the energy method and followed by the detailed derivations of the differential quadrature (DQ) equations at the inner and end points. Thus the stiffness equations of the curved beam are established. The boundary conditions for the curved beam structures are also given. Numerical examples are performed and the results are compared with the analytical solutions or with the data obtained by finite element method. It is shown that in the applications of the differential quadrature element method, one should use the number of DQ elements as small as possible in establishing the computational model. It is also shown that the results are insensitive to the element length and that the curved DQ beam element proposed in this paper has very high accuracy in both the generalized displacements and the generalized forces.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28