检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王见勇[1]
出 处:《数学的实践与认识》2002年第1期143-149,共7页Mathematics in Practice and Theory
摘 要:由 [1 ],局部β-凸空间 X的共轭锥 X*β 取代共轭空间在局部β-凸分析中扮演核心角色 .本文第一部分在局部β-凸空间上给出β-次半范的 Hahn-Banach定理 ,第二部分通过共轭锥 ( X*β ,‖‖ )得到赋β-范空间 ( X,‖‖β)的可分性定理 ,第三部分给出局部 β-凸空间的共轭锥 X*β 在一致收敛拓扑下的完备性定理等 .By , the conjugate cone X * β of a locally β-convex space plays a key role in β-convex analysis. In the first part of this aper, we prove the Hahn-Banach theorem about β-subseminormes. In the secoind, by way of the normed conjugate cone (X * β,‖‖), we give the separability theorem of a β-normed space (X,‖‖ β). We show the completeness of conjugate cone X * β of a locally β-convex space for the uniformly convergent topology at last.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7