检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机软件新技术国家重点实验室,南京210093
出 处:《计算机学报》2002年第1期1-8,共8页Chinese Journal of Computers
基 金:国家自然科学基金(60 10 5 0 0 4);江苏省自然科学基金重点项目(BK2 0 0 12 0 2 )资助
摘 要:神经网络集成通过训练多个神经网络并将其结论进行合成 ,可以显著地提高学习系统的泛化能力 .它不仅有助于科学家对机器学习和神经计算的深入研究 ,还有助于普通工程技术人员利用神经网络技术来解决真实世界中的问题 .因此 ,它被视为一种有广阔应用前景的工程化神经计算技术 ,已经成为机器学习和神经计算领域的研究热点 .该文从实现方法、理论分析和应用成果等三个方面综述了神经网络集成的国际研究现状 。Neural network ensemble can significantly improve the generalization ability of learning systems through training a finite number of neural networks and then combining their results. It is not only helpful for scientists to investigate machine learning and neural computing but also helpful for common engineers to solve real world problems using neural network techniques. Therefore neural network ensemble has been regarded as an engineering neural computing technology that has great application prospect. Also it has become a hot topic in both machine learning and neural computing communities. In this paper, the state of the art of neural network ensemble is surveyed from three aspects including implementation methods, theoretical analysis, and applications. Moreover, some issues valuable for future exploration in this area are indicated and discussed.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15