检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学,合肥230009 [2]中国科学技术大学,合肥230026
出 处:《应用力学学报》2001年第4期1-8,共8页Chinese Journal of Applied Mechanics
基 金:国家自然科学基金资助项目 (195 72 0 6 0 )
摘 要:边界元法中存在几乎奇异积分的计算困难。引起边界单元上几乎奇异积分的因素是源点到其邻近单元的最小距离δ。本文拓展文 [1 ]的思想 ,进一步采用分部积分将δ移出奇异积分式中积分核之外 ,转换后的积分核是δ的正则函数。所以几乎强奇异和超奇异积分被化为无奇异的规则积分与解析积分的和 ,可由通常的Gauss数值积分解出。文中应用此正则化技术求解了弹性力学平面问题的近边界点位移和应力。The nearly singular integral occurs in the boundary element formulation when a source point is close to the integration element (as compared to its size) but not on this element. This paper extends the strategy of Ref. and presents a non singular algorithm to deal with the difficult problem of the evaluation of the nearly strong singular and hypersingular integrals. The singular factor, which is expressed by the least distance from the source point to its neighboring element, is moved out from the kernel functions in the singular integrals by means of an integration by parts. The resulting kernels are regular functions of the least distance. Therefore, the nearly singular integrals are transformed into the sum of analytical integrals and non singular integrals, for which the Gaussian integration is sufficient to provide very accurate results. The regularization technique is used to analyze two dimensional elasticity problems. The numerical results demonstrate the accuracy and effectiveness of the algorithm.
关 键 词:边界元法 几乎奇异积分 正则化 弹性力学 无奇异算法 超奇异积分 Gauss数据积分 平面问题 近边界点应力 离散
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117