检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学年刊(A辑)》2001年第6期743-750,共8页Chinese Annals of Mathematics
基 金:国家自然科学基金(No19871068)资助的项目.
摘 要:考虑具有零理想边界的非紧镶边Riemann曲面Ω=Ω∪ Ω及其上的Dirichlet积分有限的非负局部Holder连续的二重共变量P.用F表示方程上Δu=Pu在 Ω取极限值0的非负连续解全体.本文讨论拟Picard原理成立的充要条件并证明:若Ω的每一理想边界点都有端邻域满足广义Heins条件,则Martin函数全体所成之集是F中的极小正解全体所支撑的子半线性空间P的一个Hamel基,而且F可表示为与P相关的直和形式.Consider a non-compact bordered Riemann surface Ω = Ω∪ Ω with compact border Ω and null ideal boundary in Kerekjato-Stoilow' sense. Let F be the cone of all the nonnegative solutions of the elliptic equation Δu = Pu, which vanish on Ω and are continuous on Ω, where the density P is a nonnegative locally Holder continuous covariant bivector on Ω with a finite Dirichlet integral. In this article, the authors give a necessary and sufficient condition that the Picard priciple is valid. Moreover, it is shown that if each ideal boundary point of Ω satisfies so called generalized Heins' conditions, then the collection of all Martin functions on Ω is a Hamel base of the sub-cone P of F, spanned by the extremal positive solutions of the equation, and F is a direct sum with respect to P.
关 键 词:二阶椭圆型方程 椭圆调和维数 拟Picard原理 Hamel基 RIEMANN曲面 Jordam曲线 Picard原理 非负解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145