零理想边界的素端上某类椭圆型方程的非负解  

NONNEGATIVE SOLUTIONS OF SOME KIND OF ELLIPTIC EQUATIONS ON ENDS WITH NULL IDEAL BOUNDARY

在线阅读下载全文

作  者:邱曙熙[1] 曾建武[1] 

机构地区:[1]厦门大学数学系,福建厦门361005

出  处:《数学年刊(A辑)》2001年第6期743-750,共8页Chinese Annals of Mathematics

基  金:国家自然科学基金(No19871068)资助的项目.

摘  要:考虑具有零理想边界的非紧镶边Riemann曲面Ω=Ω∪ Ω及其上的Dirichlet积分有限的非负局部Holder连续的二重共变量P.用F表示方程上Δu=Pu在 Ω取极限值0的非负连续解全体.本文讨论拟Picard原理成立的充要条件并证明:若Ω的每一理想边界点都有端邻域满足广义Heins条件,则Martin函数全体所成之集是F中的极小正解全体所支撑的子半线性空间P的一个Hamel基,而且F可表示为与P相关的直和形式.Consider a non-compact bordered Riemann surface Ω = Ω∪ Ω with compact border Ω and null ideal boundary in Kerekjato-Stoilow' sense. Let F be the cone of all the nonnegative solutions of the elliptic equation Δu = Pu, which vanish on Ω and are continuous on Ω, where the density P is a nonnegative locally Holder continuous covariant bivector on Ω with a finite Dirichlet integral. In this article, the authors give a necessary and sufficient condition that the Picard priciple is valid. Moreover, it is shown that if each ideal boundary point of Ω satisfies so called generalized Heins' conditions, then the collection of all Martin functions on Ω is a Hamel base of the sub-cone P of F, spanned by the extremal positive solutions of the equation, and F is a direct sum with respect to P.

关 键 词:二阶椭圆型方程 椭圆调和维数 拟Picard原理 Hamel基 RIEMANN曲面 Jordam曲线 Picard原理 非负解 

分 类 号:O174.51[理学—数学] O174.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象