检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州大学
出 处:《数学进展》1991年第3期363-370,共8页Advances in Mathematics(China)
摘 要:Kaehler流形是偶维微分流形,奇维微分流形中,与之媲美的是Sasaki流形。它是正规、切触度量流形。关于Sasaki流形,有判别定理(见[1]中P272定理5.1) 定理A 殆切触度量流形M是Sasaki流形的充要条件为 (xφ)Y=g(X,Y)ξ-g(Y,ξ)X。 (1) 我们知道,Kaehler流形的Sasaki实超曲面是Sasaki流形,其维数也是奇数。Bejancu成功地对Kaehler流形的反全纯子流形引入Sasaki结构,定义了Sasaki反全纯子流形。A.Bejancu introduced the concept of Sasakian anti-holomorphic submanifolds of Kaehlerian manifolds.He got some theorems on Sasakian anti-holomorphic submanifolds of Kaehlerian manifolds with flat normal connection. In this paper, the authors prove that condition 'flat normal connection'is not necessary in the theorems of Bejancu. Some similar theorems on Sasakian CR submanifolds of Kaehlerian manifolds introduced this paper are obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.87