检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢满怀[1] 宇文旋 Lu Manhuai;Yuwen Xuan(Zhongshan College,University of Electronic Science and Technology of China,Zhongshan 528400,Guangdong,China;School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]电子科技大学中山学院,中山528400 [2]电子科技大学机械与电气工程学院,成都611731
出 处:《现代制造工程》2018年第12期130-136,共7页Modern Manufacturing Engineering
基 金:2016年度中山市社会公益科技研究项目(2016B2150);中山市2017年度社会公益重大专项项目(2017B1020)
摘 要:为了提高机器视觉系统的图像分割精度,提出了一种以小波变换为分类特征的多神经网络(Multi-Neural Network,MNN)图像分割算法,该算法包括小波特征提取、MNN区域划分和MNN分类3个阶段。其中,小波特征提取根据小波变换的各层图像扩展得到分类特征;MNN区域划分将初分割边界附近区域分为训练样本区域和待分类区域(待分区域),并用多边形拟合算法将待分区域划分为多个局部待分区域;MNN分类将每个局部待分区域的像素用区域内的神经网络分类器进行分类,确定目标像素和背景像素,将目标像素合并后再进行一定的后处理即可得到分割结果。以轴承表面缺陷检测系统采集的轴承缺陷图像为对象,对MNN算法和阈值分割算法进行了对比试验,结果显示MNN算法的像素数量误差(Pixel Error,PE)相比阈值分割算法降低了75%,分割精度显著提高。To improve the image segmentation accuracy of machine vision system,a Multi-Neural Network (MNN)segmentation algorithm based on wavelet transform is proposed.The algorithm consists of three phases :multi-neural network region division, feature extraction and classification.The training region and the region to be classified near the boundary of the initial segmentation are divided into several small regions by the polygon fitting algorithm.The feature extraction is achieved by the extension of images which are the result of wavelet transform of the original image.The neural network classifier classifies the pixels in the region to be classified to target pixels and background pixels,and to obtain the segmentation results,some post-processing are performed.The multi-neural network algorithm and the threshold segmentation algorithm are compared with the segmentation accura: cy of bearing defect image.The result shows that the Pixel Error (PE)of the multi-neural network algorithm is reduced by 75% than the threshold segmentation algorithm.Segmentation accuracy is improved significantly.
关 键 词:图像分割 机器视觉 神经网络 小波变换 特征提取
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TN919.8[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28