多神经网络图像分割算法  被引量:2

Multi-neural network algorithm for image segmentation

在线阅读下载全文

作  者:卢满怀[1] 宇文旋 Lu Manhuai;Yuwen Xuan(Zhongshan College,University of Electronic Science and Technology of China,Zhongshan 528400,Guangdong,China;School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)

机构地区:[1]电子科技大学中山学院,中山528400 [2]电子科技大学机械与电气工程学院,成都611731

出  处:《现代制造工程》2018年第12期130-136,共7页Modern Manufacturing Engineering

基  金:2016年度中山市社会公益科技研究项目(2016B2150);中山市2017年度社会公益重大专项项目(2017B1020)

摘  要:为了提高机器视觉系统的图像分割精度,提出了一种以小波变换为分类特征的多神经网络(Multi-Neural Network,MNN)图像分割算法,该算法包括小波特征提取、MNN区域划分和MNN分类3个阶段。其中,小波特征提取根据小波变换的各层图像扩展得到分类特征;MNN区域划分将初分割边界附近区域分为训练样本区域和待分类区域(待分区域),并用多边形拟合算法将待分区域划分为多个局部待分区域;MNN分类将每个局部待分区域的像素用区域内的神经网络分类器进行分类,确定目标像素和背景像素,将目标像素合并后再进行一定的后处理即可得到分割结果。以轴承表面缺陷检测系统采集的轴承缺陷图像为对象,对MNN算法和阈值分割算法进行了对比试验,结果显示MNN算法的像素数量误差(Pixel Error,PE)相比阈值分割算法降低了75%,分割精度显著提高。To improve the image segmentation accuracy of machine vision system,a Multi-Neural Network (MNN)segmentation algorithm based on wavelet transform is proposed.The algorithm consists of three phases :multi-neural network region division, feature extraction and classification.The training region and the region to be classified near the boundary of the initial segmentation are divided into several small regions by the polygon fitting algorithm.The feature extraction is achieved by the extension of images which are the result of wavelet transform of the original image.The neural network classifier classifies the pixels in the region to be classified to target pixels and background pixels,and to obtain the segmentation results,some post-processing are performed.The multi-neural network algorithm and the threshold segmentation algorithm are compared with the segmentation accura: cy of bearing defect image.The result shows that the Pixel Error (PE)of the multi-neural network algorithm is reduced by 75% than the threshold segmentation algorithm.Segmentation accuracy is improved significantly.

关 键 词:图像分割 机器视觉 神经网络 小波变换 特征提取 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TN919.8[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象