检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓琉元 杨明[1,2] 王春香[1,2] 王冰 Deng Liuyuan;Yang Ming;Wang Chunxiang;Wang Bing(Department of Automation,Ministry of Education of China, Shanghai Jiao Tong University,Shanghai 200240,China;Key Laboratory of System Control and Information Processing,Ministry of Education of China, Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学自动化系,上海200240 [2]上海交通大学系统控制与信息处理教育部重点实验室,上海200240
出 处:《华中科技大学学报(自然科学版)》2018年第12期24-29,共6页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(U1764264,61873165);上海汽车工业科技发展基金资助项目(1733,1807)
摘 要:针对环视鱼眼图像中目标几何畸变大导致建模难的问题,提出一种基于可变形卷积网络的实例分割方法,主要是在Mask R-CNN框架的基础上引入可变形卷积和可变形RoI Pooling(候选区域池化)来提升网络对几何畸变的建模能力.针对深度神经网络训练数据缺乏、易过拟合的问题,提出了基于多任务学习的训练方法.首先将现有的大规模普通图像数据集转换为鱼眼数据集来弥补训练数据不足的问题,然后采用多任务学习的训练方法将转换的图像和真实图像放在同一个框架中训练以提高网络的泛化能力.用该方法在真实的环视鱼眼图像上做测试,结果表明:相对于原始Mask R-CNN的方法平均精度提升了3.1%,证明了该方法在真实交通环境中的有效性.Aimed at handling the problem of modeling large geometric distortions caused by surround view cameras,a deformable convolutional networks based instance segmentation method was proposed.The method introduced the deformable convolution and deformable RoI(region of interest) Pooling into the framework of Mask R-CNN.Aimed at handling the problems of insufficient data to train the deep neural networks and overfitting, a multi-task learning based training method was proposed. First, an existing large-scale dataset of conventional images was transformed to a fisheye-style dataset to compensate the lack,and then a multi-task learning method was adopted to train the transformed images and real-world images in a united architecture to improve the generalization ability.The proposed method was tested on the real-world fisheye images.It shows an improvement of 3.1% over the original Mask R-CNN method,which demonstrates the effectiveness of the proposed method in real-world traffic environments.
关 键 词:图像处理 无人驾驶 环境感知 实例分割 可变形卷积网络 多任务学习 环视相机
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229