检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志军[1]
机构地区:[1]烟台大学数学与信息科学系
出 处:《数学年刊(A辑)》2002年第3期395-406,共12页Chinese Annals of Mathematics
基 金:国家自然科学基金(No.10071066)资助的项目.
摘 要:设Ω是RN(N≥3)中的C2有界区域,对带负对流项的情形,对更广泛的非线性项,构造一种新型的非线性变换将爆炸解问题,转化成等价的带奇异项的Dirichlet问题,应用极大值原理得到了爆炸解问题解的最小爆炸速度.应用三种摄动方法,结合上下解方法、二阶椭圆型偏微分方程的估计理论得到了爆炸解的存在性.特别允许非线性项的系数不仅在Ω的内部子区域恒为零而且在Ω上可适当无界.随后再应用摄动方法,将所得结果推广到RN,得到了整体爆炸解的存在性以及在无穷远附近的最小爆炸速度.而对带正对流项的情形,对更广泛的非线性项,构造爆炸上下解u和u在Ω上满足u≤u,得到了爆炸解u的存在性且在Ω上满足u≤u≤u.Let Ω be a bounded domain with C2 boundary Ω in RN(N ≥ 3), for the more general nonlinearity, the new change of variable transforms the problem of explosive solutions with a negative convection term into the equivalent Dirichlet problem. He exposes that the explosive solutions have the lowest speed. Then, by the perturbed methods, and sub-supersolutions method, the existence of explosive solutions is obtained. In addition, he allows the coefficient of nonlinearity to be not only suitable unbounded on Ω but also zero on large parts of Ω including Ω. He also showed that the problem has one entire solution and characterized the asymptotic behavior of the solution near ∞ when Ω = RN. For a positive convection term, he constructs explosive supersolution u and explosive subsolution u satisfying u ≤ u in Ω and obtain the existence of explosive solutions for the problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7