检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:裴永刚[1]
机构地区:[1]河南师范大学数学与信息科学学院,河南新乡453007
出 处:《应用数学》2014年第3期519-528,共10页Mathematica Applicata
基 金:Supported by the National Science Foundation Grant of China(11171094);the Key Scientific and Technological Project of Henan Province(142102210058)
摘 要:设E是一致凸Banach空间,且具有一致Gteaux可微范数,C是E的一个非空闭凸子集,T是渐近非扩张映射.对于任意x∈C,本文引入Cesàro意义上的修正Ishikawa迭代:x0=x∈C,yn=γnun+δnxn+(1-γn-δ)n+11∑j=0nTjxn,xn+1=μnvn+αnγf(xn)+βnxn+[(1-μn-βn)I-αnA]n+11∑j=0nTjyn,n≥0在适当的条件下证明此迭代序列的强(弱)收敛性.Let Cbe a nonempty closed convex subset of a uniformly convex Banach space Ewith a uniformly Gteauxdifferentiablenorm.Suppose that T∶C →Cis an asymptotically nonexpansive mapping.For an arbitrary initial value x ∈C,we introduce the modified Ishikawa iteration of its Cesàro means:x0 =x∈C arbitrarily chosen,yn=γnun+δnxn+(1-γn-δ)n+11∑j=0nTjxn,xn+1=μnvn+αnγf(xn)+βnxn+[(1-μn-βn)I-αnA]n+11∑j=0nTjyn,n≥0and prove its strong and weak convergence under some mild conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28