检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢华朝[1]
机构地区:[1]河南财经政法大学数学与信息科学学院,郑州450056
出 处:《华中师范大学学报(自然科学版)》2014年第4期461-464,共4页Journal of Central China Normal University:Natural Sciences
基 金:国家自然科学基金项目(11326136);河南省自然科学基金项目(14B110033)
摘 要:在有界光滑区域ΩRN(N>4)上,研究了双调和方程Δ2u-λu=f(x,u),x∈Ω;u=u/n=0,x∈Ω,其中,f(x,u)是关于u的奇函数,u趋于无穷时是次临界的,并且不满足A-R条件.利用对称的山路引理,证明上面的方程有无穷多解且相应的临界值序列趋于正无穷大.In this paper,we have studied the following biharmonic problem on a smooth domain Ω C R^N(N〉 4) ∶Δ^2u-λu =f(x,u),x ∈ Ω; u =Ou/On =0,x ∈δΩ Ω,where the nonlinearity f(x,u) is odd symmetric with respect to u,has subcritical growth at infinity and does not satisfy A-R condition.Using symmetric mountain pass theorem,we prove that the above problem has infinitely many solutions,and the corresponding critical values approach to positive infinity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28