正余弦曲线的一个余弦定理  

在线阅读下载全文

作  者:玉炳图[1] 

机构地区:[1]云南省广南县第一中学

出  处:《数理化学习(高中版)》2014年第7期2-3,共2页

摘  要:本文介绍正弦曲线和余弦曲线的余弦定理与应用,供读者欣赏.定理:设正弦曲线y=Asinωx或余弦曲线y=Acosωx(A>0,ω>0)与x轴相邻的两个交点是M,N,P是正余弦曲线上且位于M,N之间的最高点或最低点,∠MPN=θ,π是圆周率,则cosθ=4ω2A2-π24ω2A2+π2.证明:因为正余弦曲线的形状和周期性相同,故将点M平移至坐标原点O,由函数y=Asinωx(A〉0,ω〉0)的性质得M(0,0),P(π/2ω,A),N(π/ω,0),故由对称性得|MP|=|NP|=√(4ω2A2+π)/2ω,|MN|=π/ω。

关 键 词:余弦定理 正弦曲线 最低点 最高点 圆周率 对称性 周期 

分 类 号:G634.6[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象