检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京信息科技大学自动化学院,北京100192
出 处:《计算机应用》2014年第8期2371-2374,2379,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(11172047);北京市属高等学校人才强教深化计划资助项目(PHR201106131)
摘 要:针对移动服务机器人在未知环境下三维路径估计的问题,设计了一种基于Kinect的实时估计机器人运动轨迹的方法。该方法采用Kinect获取机器人运动过程中连续帧的彩色和深度信息,首先,提取并匹配目标帧和参考帧的SURF的特征点;然后,结合深度信息利用经典P3P问题的方法及改进的随机采样一致性(RANSAC)算法计算机器人的初始6自由度(DOF)位姿;最后,通过非线性最小二乘算法最小化初始位姿内点的双向投影误差来提高位姿精度,进而得到机器人的运动轨迹。同时对比了不同特征点及描述符结合下的里程计精度。实验结果表明,所提方法能够将里程计误差降低到3.1%,且能够满足实时要求,可为机器人同时定位与地图创建提供重要的先验信息。Aiming at the problem of 3D trajectory estimation for mobile service robots in unknown environments, this thesis proposed a novel framework for using Kinect sensor to estimate the motion trajectory of mobile robots in real time. RGB-D information of successive frames in the environment was captured by a Kinect: firstly, the feature points of Speeded Up Robust Feature (SURF) of the target frame and reference frame were extracted and matched; secondly, initial 6 Degree Of Freedom (DOF) pose estimation was computed by a novel solution for the classical Perspective-3-Point (P3P) problem and an improved Random Sample Consensus (RANSAC) algorithm combining with depth information; lastly, the pose estimation was refined by minimizing the reprojection error of inliers of initial value via a nonlinear least-squares solver, and then the motion trajectory of the robot was gained. The experimental results show that the error of the odometry is reduced to 3.1% by the proposed approach in real time. It can provide important prior information for simultaneous localization and mapping of robots.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.60