检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031
出 处:《现代电子技术》2014年第17期157-159,162,共4页Modern Electronics Technique
摘 要:负载惯量和外界干扰是影响贴片机X,Y轴快速高精度定位的两个关键因素。本文针对负载惯量和外界干扰对控制性能的影响,提出了基于RBF神经网络的自适应滑模控制算法。利用RBF神经网络的万能逼近特性实现对外加干扰和被控对象模型信息的逼近,运用自适应控制算法计算前馈补偿量以补偿负载惯量和摩擦力对运动性能的影响,采用滑模控制算法以抑制其他不确定干扰对运动控制的影响。通过仿真分析可以得出,所采用的控制算法能够有效地补偿负载惯量和外界干扰对定位性能的影响,从而实现贴片机X,Y轴的快速高精度定位。The load inertia and the outside disturbance are the key factors that affect X/Y-axis high-precision fast position of SMT placement. An adaptive sliding mode control algorithm based on RBF neural network is proposed in this paper to eliminate the influence of load inertia and outside interference. The universal approximation property of RBF neural network is used to realize approximation of external disturbance and model information of the controlled object. Feed-forward compensation amount calculat-ed by using the adaptive control algorithm is used to compensate the load moment of inertia and friction effects on motion perfor-mance. The sliding mode control algorithm is adopted to suppress the influence of other uncertain disturbance on motion control. The simulation analysis indicates that the control algorithm can effectively compensate the efforts of load inertia and outside inter-ference on positioning performance,so as to realize the high-precision rapid positioning of X- and Y-axis in SMT placement.
关 键 词:贴片机 快速高精度定位 运动控制 RBF神经网络 自适应滑模控制
分 类 号:TN710-34[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63