检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学,河南郑州450001
出 处:《信息工程大学学报》2014年第4期434-439,共6页Journal of Information Engineering University
基 金:国家科技重大专项资助项目(2011ZX03003-003-02)
摘 要:在室内环境中,影响定位精度的测量误差包括接收设备自身引起的误差以及信号非视距传播和多径效应所引起的测量正偏差。针对室内环境中测量数据包含测量误差服从正均值高斯分布的特性,提出了一种自适应权重更新的两步定位算法。该算法使用卡尔曼滤波和自适应权重更新的加权最小二乘算法进行两步定位,通过对每个测量距离分配不同的权重,克服了固定权重分配需在特定环境下方能获得良好定位精度的缺点。仿真结果表明,该算法定位精度优于两步定位算法和EKF算法,且对环境适应性更强。The main impact on position accuracy of wireless indoor positioning systems is measure- ment error. The measurement error consists of an error caused by the receiver and a bias component in rich multipath indoor radio propagation environment. This paper proposes a two-stage locating method which adaptively updates the weighting matrix to deal with the issue of measurement error subject to the positive mean of the Gaussian distribution characteristics. The two-stage locating algo- rithm is composed by Kalman filtering and weighted least square algorithm with adaptively updated weight. By assigning different weight to each distance measurement, the proposed algorithm overcomes the shortage that satisfying location performance can only be achieved in certain environment by two-stage locating algorithms with fixed weighting matrix. Simulations indicate that the proposed method obtains higher accuracy compared with two-stage locating algorithms of fixed weighting matrix and Extended Kalman filter algorithms,and has better applicability to various environments.
关 键 词:两步定位 自适应权重 卡尔曼滤波 加权最小二乘算法
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28