小波包神经网络与数据降维的移相全桥变换器的故障诊断  被引量:2

Phase-shift Full Bridge Converter Fault Diagnosis Based on Wavelet Packet and Neural Network and Data Dimensionality Reduction

在线阅读下载全文

作  者:毛向德 王庆贤[1] 董唯光[1] 梁金平[1] 朱科[1] 

机构地区:[1]兰州交通大学自动化与电气工程学院,兰州730070

出  处:《电源学报》2014年第4期68-75,共8页Journal of Power Supply

基  金:甘肃省财政厅基本科研项目(213063)~~

摘  要:移相全桥变换器作为机车控制电源的核心电路其故障特征类型极其丰富,故障信息量大,为了彻底全面地挖掘故障信息,提出了小波包神经网络和数据降维的新型故障诊断模式,主要利用流形学习来对高维的故障特征量进行降维,提取其本质特征解决了由小波包多层分解带来的"维数灾难",减轻了模式识别的压力。利用Matlab仿真软件分析,此方法可以使模式识别的时间缩短,准确率提高,从而验证了该方法的有效性。As a core circuit of locomotive control power supply, phase-shift full-bridge converter fault type is extremely rich, and it has large amount of fault information. In order to dig fault information thoroughly and comprehensively, there is a new model that wavelet packet and neural network and data dimensionality reduction for fauh diagnosis. The main idea is taking use of manifold learning to reduce the dimension of high dimensional fault characteristic quantity and to extract its essential characteristics, so as to solve"curse of dimensionality" from the multi- wavelet packet decomposition, and reduce the pressure on pattern recognition. Under the analysis of Matlab simulation software, this method can shorten the time of pattern recognition and improve the accuracy rate. Finally demonstrate that this method is effective.

关 键 词:移相全桥变换器 故障诊断 小波包变换 流形学习 数据降维 神经网络 

分 类 号:TM713[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象