检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学信息与控制工程学院,西安71005
出 处:《地下空间与工程学报》2014年第4期968-974,共7页Chinese Journal of Underground Space and Engineering
基 金:国家科学自然基金资助项目(No.51178373)
摘 要:地铁车站由于其特殊环境,照明主要依靠人工照明,照明工作时间长、功耗大是其主要特点,因此照明系统节能存在较大空间。对照明能耗的预测与分析是进行照明节能改造与设计的前提和基础。模糊最小二乘支持向量机因其有着学习速度快、跟踪性能好、泛化能力强、精度高等优点被广泛应用于能耗预测领域。本文利用模糊最小二乘支持向量机建立能耗预测模型,并且采用MATLAB的LS-SVM工具箱对预测模型进行了仿真研究,最后通过与RBF神经网络能耗预测模型仿真对比试验表明了基于最小二乘支持向量机的能耗预测模型拟合度好、精度高,是照明能耗预测的有效方法。Owing to the specific environment of subway station,where the lighting mainly relies on artificial lighting and the lighting systems have the characteristics of long working time,high running cost and so on. Thus there exists giant potential in the work of lighting system energy saving in the future. Prediction and analysis of lighting energy consumption is the prerequisite and basis of the lighting energy-saving design. The fuzzy least squares support vector machine which has fast learning speed,good tracking performance and generalization ability,is widely used in the field of energy consumption prediction. The prediction model is constructed of lighting energy consumption based on FLS-SVM in this paper; the prediction model is simulated with MATLAB LS-SVM lab Toolbox. By way of the contrast test for prediction model with the RBF neural network energy with FLS-SVM model to show that FLS-SVM model has high fitting degree and high precision and is an effective way of lighting energy consumption forecast.
关 键 词:能耗 预测模型 最小二乘支持向量机 模糊最小二乘支持向量机 RBF神经网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33