检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨银[1]
机构地区:[1]湘潭大学土木工程与力学学院、科学工程计算与数值仿真湖南省重点实验室,湘潭 411105
出 处:《工程数学学报》2014年第5期745-752,共8页Chinese Journal of Engineering Mathematics
基 金:The National Natural Science Foundation of China(11301446);the Postdoctoral Science Foundation of China(2013M531789);the Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057);the Research Foundation of Hunan Provincial Education Department(13B116)
摘 要:分数阶微分方程已经广泛地应用于工程等各个领域.在本文中,我们针对一类带变系数的空间分数阶偏微分方程,提出了一种Chebyshev拟谱的数值方法,其中分数阶导数是由Caputo分数阶导数定义.该方法能将空间分数阶偏微分方程转化为一个常微分方程,然后在时间上用有限差分方法离散.数值实验表明该方法是有效的.Fractional partial differential equations (FPDEs) have recently been applied in var-ious areas of engineering, science, finance, applied mathematics, bioengineering and others. In this paper, an efficient numerical method for solving a class of space fractional partial differential equations (SFPDEs) with variable coefficients is con-sidered. The fractional derivative is described in the Caputo sense. The method is based upon Chebyshev approximations. The properties of Chebyshev polynomi-als are utilized to reduce SFPDEs to a system of ordinary differential equations, which is solved by the finite difference method. Numerical solutions of SFPDEs are presented and the results are compared with the exact solution.
关 键 词:空间分数阶偏微分方程 CHEBYSHEV多项式 拟谱方法 CAPUTO导数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.11.120