检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数理学院,兰州730070 [2]复旦大学数学科学学院,上海200433
出 处:《工程数学学报》2014年第5期779-790,共12页Chinese Journal of Engineering Mathematics
基 金:The National Natural Science Foundation of China(11161027;11262009;11226132);the Natural Science Foundation of Gansu Province(1308RJZA113);the Scientific Research Projects in Colleges and Universities of Gansu Province(2013A-043);the Fundamental Research Funds for the Gansu Universities(212084;213061);the Youth Science Foundation of Lanzhou Jiaotong University(2012019)
摘 要:许多物理、航天科学、生态科学、工程中的实际问题都需要用分数阶微分方程来描述,因此对于分数阶微分方程的研究有着十分重要的理论意义和实践价值.本文在Pettis可积性假设条件下讨论了一类带有非分离边值条件的非线性分数阶微分包含弱解的存在性.微分算子是Caputo导算子,并且非线性项具有弱序列闭图像.本文的理论分析基于Monch不动点定理和弱非紧性测度的技巧,并举例论证了结论的有效性.Many practical problems, such as those from physics, aerospace science, ecological science and engineering, need to be described by fractional differential equations, so it is important to study these equations in theory and implement. In this paper, under the Pettis integrability assumption, we discuss the existence of weak solution to the boundary value problem for a class of nonlinear fractional differential inclu-sion involving non-separated boundary conditions. The differential operator is the Caputo derivative, and the nonlinear term has weakly sequentially closed graph. The analysis relies on Monch’s fixed point theorem combined with the technique of measures of weak noncompactness. Finally, an example is given to illustrate the effectiveness of the proposed method.
关 键 词:边值问题 分数阶微分包含 CAPUTO分数阶导数 弱解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38