具有非分离边界条件的非线性分数阶微分包含弱解的存在性(英文)  被引量:2

Existence of Weak Solutions for Nonlinear Fractional Differential Inclusion with Non-separated Boundary Conditions

在线阅读下载全文

作  者:周文学[1,2] 刘海忠[1] 

机构地区:[1]兰州交通大学数理学院,兰州730070 [2]复旦大学数学科学学院,上海200433

出  处:《工程数学学报》2014年第5期779-790,共12页Chinese Journal of Engineering Mathematics

基  金:The National Natural Science Foundation of China(11161027;11262009;11226132);the Natural Science Foundation of Gansu Province(1308RJZA113);the Scientific Research Projects in Colleges and Universities of Gansu Province(2013A-043);the Fundamental Research Funds for the Gansu Universities(212084;213061);the Youth Science Foundation of Lanzhou Jiaotong University(2012019)

摘  要:许多物理、航天科学、生态科学、工程中的实际问题都需要用分数阶微分方程来描述,因此对于分数阶微分方程的研究有着十分重要的理论意义和实践价值.本文在Pettis可积性假设条件下讨论了一类带有非分离边值条件的非线性分数阶微分包含弱解的存在性.微分算子是Caputo导算子,并且非线性项具有弱序列闭图像.本文的理论分析基于Monch不动点定理和弱非紧性测度的技巧,并举例论证了结论的有效性.Many practical problems, such as those from physics, aerospace science, ecological science and engineering, need to be described by fractional differential equations, so it is important to study these equations in theory and implement. In this paper, under the Pettis integrability assumption, we discuss the existence of weak solution to the boundary value problem for a class of nonlinear fractional differential inclu-sion involving non-separated boundary conditions. The differential operator is the Caputo derivative, and the nonlinear term has weakly sequentially closed graph. The analysis relies on Monch’s fixed point theorem combined with the technique of measures of weak noncompactness. Finally, an example is given to illustrate the effectiveness of the proposed method.

关 键 词:边值问题 分数阶微分包含 CAPUTO分数阶导数 弱解 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象