基于改进的Adaboost_SVM的人脸表情识别  被引量:5

Facial Expression Recognition Based on Improved Adaboost_SVM Cascade Classifier

在线阅读下载全文

作  者:惠晓威[1] 周金彪[2] 

机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105 [2]辽宁工程技术大学研究生学院,辽宁葫芦岛125105

出  处:《激光杂志》2014年第9期54-57,共4页Laser Journal

摘  要:针对AdaBoost算法随着学习难度的增加导致分类器的分类效率下降、稳定性变差等问题,支持向量机在小样本中有特有优势;本文结合两种算法优势,基于蚁群算法对SVM的参数进行优化,改进了Adaboost_SVM级联分类算法,首先提取haar-like矩形特征通过Adaboost分类器快速排出非人脸区域;用Gabor小波变换提取人脸表情特征,再结合Adaboost_SVM级联分类器进行人脸表情识别。通过对JAFFE表情库进行试验,表情平均识别率达到94.2%,检测速度有了很大提高。Aiming at the fault of reduced classifier efficiency、poor stability and other issues of AdaBoost algo-rithm that caused by the increase of the learning difficulty and the unique advantages that Support vector machine has in small samples, based on ant colony algorithm to optimize the parameters of SVM, this paper improves Ada-boost_SVM cascade classification algorithm combining the advantages of Adaboost algorithm and SVM. Haar-like rectangle features are used to remove non-face by using Adaboost classifier. Gabor wavelet transformation is adopted to extract features of facial expression, and then, combined with Adaboost_SVM cascade classification to recognize facial expression. Experimental result shows that the recognition rate reaches 94.2%and the detect speed has been greatly improved through JAFFE database.

关 键 词:ADABOOST算法 支持向量机 蚁群算法 人脸表情识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象