Seizure detection using earth movers' distance and SVM in intracranial EEG  

基于推土机距离和支持向量机的脑电癫痫检测算法(英文)

在线阅读下载全文

作  者:王芸[1,2] 吴琦[3] 周卫东[1,2] 袁莎莎[1,2] 袁琦[1,2] 

机构地区:[1]山东大学信息科学与工程学院,山东济南250100 [2]山东大学苏州研究院,江苏苏州215123 [3]山东大学齐鲁医院,山东济南250100

出  处:《Journal of Measurement Science and Instrumentation》2014年第3期94-102,共9页测试科学与仪器(英文版)

基  金:Key Program of Natural Science Foundation of Shandong Province(No.ZR2013FZ002);Program of Science and Technology of Suzhou(No.ZXY2013030);Independent Innovation Foundation of Shandong University(No.2012DX008)

摘  要:Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.

关 键 词:electroencephalograph (EEG)signals earth movers' distance (EMD) EMD-L1 support vector machine(SVM) wavelet decomposition seizure detection 

分 类 号:R742.1[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象