检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]轻工过程先进控制教育部重点实验室(江南大学),江苏无锡214122 [2]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机应用》2014年第11期3309-3313,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(60975027;61305017);江苏高校优势学科建设工程项目
摘 要:针对现有近邻传播聚类图像分割方法分割精度低的问题,提出一种基于模糊连接度的邻近传播聚类(FCAP)图像分割算法。针对传统模糊连接度算法不能得出任意点对间模糊连接度的不足,结合最大生成树提出了全模糊连接度算法。FCAP算法先使用Normalized Cut超像素技术进行超像素分割,这些超像素可以看作数据点以及它们之间的模糊连接度;然后使用所提出的全模糊连接度算法计算超像素间的模糊连接度,根据模糊连接度和空间信息计算超像素的相似度;最后使用近邻传播(AP)聚类算法完成分割。实验结果表明,FCAP算法明显优于超像素处理后直接使用AP聚类算法进行分割的方法,并且优于无监督图像分割方法。Considering the low accuracy of the existing image segmentation method based on affinity propagation clustering, a FCAP algorithm which combined fuzzy connectedness and affinity propagation clustering was proposed. A Whole Fuzzy Connectedness( WFC) algorithm was also proposed with concerning the shortcoming of traditional fuzzy connectedness algorithms that can not get fuzzy connectedness of every pair of pixels. In FCAP, the image was segmented by using super pixel technique. These super pixels could be considered as data points and their fuzzy connectedness could be computed by WFC. Affinities between super pixels could be calculated based on their fuzzy connectedness and spatial distances. Finally,affinity propagation clustering algorithm was used to complete the segmentation. The experimental results show that FCAP is much better than the methods which use affinity propagation clustering directly after getting super pixels, and can achieve competitive performance when comparing with other unsupervised segmentation methods.
关 键 词:图像分割 模糊连接度 近邻传播聚类 超像素 最大生成树
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38