检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何炎祥[1,2] 刘续乐 陈强[1,2] 梁伟[1] 孙松涛[1,2]
机构地区:[1]武汉大学计算机学院,武汉430072 [2]武汉大学软件国家重点实验室,武汉430072
出 处:《小型微型计算机系统》2014年第11期2385-2389,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61070083;61303115)资助
摘 要:面向消费者的公司或者企业都希望了解他们用户的需求,而大量的用户产生的数据在很大程度上就体现了用户的兴趣和需求.提出一种用于社交网站上,针对用户生成内容(User Generate Content UGC)和用户关注信息的用户兴趣发掘方法.首先通过启发式初始化的PLSA模型训练得到贴近兴趣类别的话题模型,然后从训练结果中抽取可靠的话题并以此构建分类器,对用户的分享数据进行分类,最后根据用户的分享数据分类结果来识别用户的兴趣类别.在初始化PLSA模型时,用关键词抽取算法抽取每个分类的关键词,并给这些关键词赋予较高的PLSA初始权重,以此来引导PLSA模型的训练.实验的结果表明:本文方法可以有效的构建用户兴趣类别,并对用户兴趣的挖掘比较理想.The company that directly faces consumers would like to know about the requirement of their client, and the requirement and interest can be found in these UGC data. A user interest mining system for SNS is proposed based on the large number of User Generated Content and user following information. Firstly, a heuristic initial method is used to train a PLSA model to get a topic model which well reflects the users' interests distribution. Then, we manually pick up the reliable topic to build a classifier to identify the user's interest. During the PLSA initialization period, we use key phrase extraction method to extract the key words of each class and then give these key words higher weights. This can guide the process of PLSA training. The experimental results show that the method can effectively build the user interest classes, and is more effective for mining user interest.
关 键 词:用户兴趣挖掘 社交网络 关键词抽取 概率潜在语义分析 话题模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229