基于局部统计与整体显著性的织物疵点检测算法  被引量:21

Fabric defect detection algorithm using local statistic features and global saliency analysis

在线阅读下载全文

作  者:刘洲峰[1] 赵全军[1] 李春雷[1] 董燕[1] 闫磊[1] 

机构地区:[1]中原工学院电子信息学院,河南郑州451191

出  处:《纺织学报》2014年第11期62-67,共6页Journal of Textile Research

基  金:国家自然科学基金资助项目(61379113;61202499);河南省基础与前沿技术研究计划项目(092300410175;132300410163;142300410042)

摘  要:为能有效检测织物疵点,结合局部统计特征与整体显著性分析,提出一种新的织物疵点检测算法。将织物图像分为大小相同的图像块,采用局部二进制模式和灰度直方图分别提取图像块局部统计特征。针对每个图像块,随机选取K个其他图像块,分别计算局部二进制模式统计特征对比度和灰度统计特征对比度,完成基于上下文整体显著性分析生成视觉显著图。最后采用基于迭代最优阈值分割算法对显著图进行分割,得到织物疵点检测结果。结果表明,这种算法综合了局部统计特征和整幅图像的上下文信息,可显著突出织物疵点区域,实现对织物疵点的有效检测。In order to efficiently detect defect for a fabric image with complex texture and variety of defects,this paper proposed a novel defect detection algorithm based on local statistical features and global saliency analysis.In the proposed algorithm,the target image is firstly divided into blocks with the same size,then the local binary pattern(LBP) technique is used to extract the texture features of the blocks and the histogram technique is used to extract the grayscale statistical features of the blocks.Secondly,for a given image block,K blocks are randomly chosen for calculating the LBP feature contrast and grayscale histogram feature contrast between the given block and the randomly-chosen one.Based on the obtained global contrast information,a saliency map is produced.Finally,the saliency map is segmented by using an optimal threshold,which is obtained by an iterative approach.Through these procedures,the detection result is obtained.The experimental results demonstrate that the proposed algorithm,integrating the local textual and grayscale statistical features and the global saliency analysis can detect the fabric defections effectively.

关 键 词:织物图像 疵点检测 局部二进制模式 灰度直方图 随机显著性分析 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象