基于局部敏感直方图的稀疏表达跟踪算法  被引量:1

Sparse representation tracking method based on locality sensitive histogram

在线阅读下载全文

作  者:葛凯蓉 常发亮[1] 董文会[1] 

机构地区:[1]山东大学控制科学与工程学院,山东济南250061

出  处:《山东大学学报(工学版)》2014年第5期14-19,共6页Journal of Shandong University(Engineering Science)

基  金:国家自然科学基金项目(61273277);高等学校博士学科点专项科研基金资助课题(2013013111003);教育部留学回国人员科研启动基金资助项目(20101174);山东省自然科学基金(ZR2011FM032)

摘  要:为解决目标跟踪过程中光照变化、姿态变化等问题,提出了一种基于局部敏感直方图特征的稀疏表达跟踪方法。对粒子滤波获取的多个候选目标提取局部敏感直方图特征,并根据模板字典,采用改进的L1范数模型求取每个候选目标的稀疏表示系数;然后计算每个候选目标的权重,选取权重最大的候选目标作为跟踪结果。实验结果表明,本算法能很好实现对目标的跟踪,在解决光照变化、姿态变化等问题方面有较好的效果。In order to solve the problems of illumination and pose change during target tracking,a sparse representation tracking method based on local sensitive histogram was proposed. Local sensitive histogram features of multiple candidate targets were extracted,and sparse representation coefficient of each candidate target was calculated based on template dictionary by using modified L1 norm model. Then,the weight of each candidate target was calculated. The candidate target which had the largest weight was selected as tracking result. Experimental results demonstrated that the method can track the target accurately and effectively and has advantage in illumination and pose change.

关 键 词:目标跟踪 鲁棒性 局部敏感直方图 稀疏表达 粒子滤波 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象