检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学数学学院,成都610064 [2]成都工业学院,成都611730
出 处:《四川大学学报(自然科学版)》2014年第6期1108-1112,共5页Journal of Sichuan University(Natural Science Edition)
摘 要:作者对Rosenau-Burgers方程的数值解法进行了研究,对该方程的初边值问题提出了一个三层加权隐式差分格式,讨论了差分解的存在唯一性,并分析了格式的收敛性和稳定性.数值实验验证了方法的有效性,且效果较好.A three level average implicit finite difference scheme for the solution of the initial boundary value problem of Rosenau-Burgers equation is presented. The existance and uniqueness are discussed. It is also proved that the finite difference scheme is convergent and stable. Numerical simulations show that the method is efficient.
关 键 词:Rosenau-Burgers方程 差分格式 收敛性 稳定性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249