具边界反馈时滞的粘弹方程的能量衰减(英文)  被引量:1

General Decay of the Energy for a Viscoelastic Wave Equation with a Delay Term in the Boundary Feedback

在线阅读下载全文

作  者:阳志锋[1] 

机构地区:[1]衡阳师范学院数学与计算科学系,湖南衡阳421002

出  处:《应用数学》2015年第1期1-9,共9页Mathematica Applicata

基  金:Supported by the Natural Science Foundation of Hunan Province(14JJ7070);the Key Built Disciplines of Hunan Province-Operations Research and Control Theory (Hengyang Normal University,2011)

摘  要:考虑如下具边界反馈时滞的粘弹方程ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t>0,u(x,t)=0,x∈Γ0,t>0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0<t<τ,其中Ω∈Rn(n≥1)是具C2类边界Ω的有界域.此外,g是所谓的"记忆核",μ1,μ2是两个实数,τ为时滞.在假设|μ2|<μ1下,通过构造合适的Lyapunov函数,证明上述问题能量的一般衰减性,使得指数型衰减和多项式衰减仅仅是其特殊情况.We consider a viscoelastic wave equation with a delay term in the boundary feedback; namely, we study the following problem ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t〉0,u(x,t)=0,x∈Γ0,t〉0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0〈t〈τ,whereΩ∈Rn(n≥1) be a regular and bounded domain with a boundary ЭΩ of class C2. Moreover,g is so-called "memory kernel",μ1,μ2 are two real coefficients which are not necessarily positive, and r represents the time delay. Under the restriction |μ2|〈μ1 , general decay results of the energy of the concerned problem are obtained via an appropriate Lyapunov functional. And the exponential and polynomial types of decay are only special cases.

关 键 词:粘弹性波动方程 能量衰减 时滞 边界反馈 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象