检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械科学与技术》2014年第11期1682-1687,共6页Mechanical Science and Technology for Aerospace Engineering
基 金:中央高校基本科研业务费专项资金项目(SWJTU12CX039);国家科技支撑计划项目(2009BAG12A01-E04)资助
摘 要:针对刀具磨损监测时,采集的振动信号含有强烈的背景噪声,难以提取故障频率的问题,提出采用形态滤波消噪后进行经验模态分解来提取故障频率;同时,为了准确监测刀具的磨损状态,将提取的故障特征输入到遗传算法优化的模糊神经网络对刀具的磨损进行识别,模糊神经网络的基函数采用B样条基函数。传统的网络学习算法采用梯度下降法,这在学习过程中容易陷入局部最小,论文采用遗传算法寻求全局的最优解。实验表明,该方法能有效地应用于强噪声背景下的刀具磨损识别。In view of the strong background noise involved in the fault signal of tool wears and the difficulty to obtain fault feature frequencies, in this paper, a fault feature extraction method was proposed based on morphological filters and combining with empirical mode decomposition. At the same time,tool wears were identified by genetic algorithm( GA)-fuzzy-neural networks with B-spline membership functions. Fuzzy neural networks are traditionally trained by using gradient-based methods,and may fall into local minimum during the learning process. So,the genetic algorithm was adopted for global optimization in this study. The experimental results show that the diagnosis approach put forward in this paper can effectively identify tool wears in strong background noise.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.169.229