检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学:数学》2015年第1期31-42,共12页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11371257);北京市自然科学基金(批准号:1122010)资助项目
摘 要:我们考虑一类以有界对称域D为底的Bergman-Hartogs型域Ω={(wm(1),...,w(r),z)∈C1×···×Cmr×D:∥w(1)∥2p1+···+∥w(r)∥2pr<KD(z,z)-q},其中KD(z,z)是D上的Bergman核函数,r 1且为正整数,参数p1,...,pr>1和q>0为实数.我们给出它的全纯自同构群,并且证明当r=1时此自同构群为最大全纯自同构群;当r>1时,若Ω的全纯自同构变换F将(0,z)∈{0}×D映到(0,z*)∈{0}×D,则F在我们给出的全纯自同构群中.We consider the domain Ω of the Bergman-Hartogs type which bases on any bounded symmetric domain D,Ω = {(w(1),..., w(r), z) ∈ Cm1× · · · × Cmr× D : ∥w(1)∥2p1+ · · · + ∥w(r)∥2pr〈 KD(z, z)-q},where KD(z, z) denotes the Bergman kernel on D, r is a positive integer, p1,..., pr 〉 1 and q 〉 0 are real parameters. We give the holomorphic automorphism group of Ω, and prove that the given holomorphic automorphism group is the full holomorphic automorphism group of Ω for r = 1. In addition, when r 〉 1, if the holomorphic automorphism mapping F on Ω maps(0, z) ∈ {0} × D to(0, z*) ∈ {0} × D, then F belongs to the given holomorphic automorphism group.
关 键 词:Bergman-Hartogs型域 全纯自同构群 有界对称域
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.86.218