机构地区:[1]Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College [2]School of Basic Medical Science, Xuzhou Medical College [3]Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College
出 处:《Neural Regeneration Research》2014年第23期2059-2065,共7页中国神经再生研究(英文版)
基 金:supported by the National Natural Science Foundation of China,No.30800309,81372172;the Educational Science Foundation of Jiangsu Province,China,No.10KJB350005;the Xuzhou Science Foundation in China,No.XZZD1153;the President Special Grant of Xuzhou Medical College in China,No.09KJZ20;a grant from the Zhenxing Project Foundation of XZMC
摘 要:Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad- Glur6-9c on the phosphorylation of INK, MLK3 and mitogen-activated ldnase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of INK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad- Glur6-9c on the phosphorylation of INK, MLK3 and mitogen-activated ldnase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of INK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.
关 键 词:nerve regeneration brain injury hippocampal neuronal injury seizures ADENOVIRUS GLUR6 PSD95 MLK3 KAINATE apoptosis JNK NSFC grants neural regeneration
分 类 号:R742.1[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...