检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学机械工程学院,四川成都610031
出 处:《机械工程与自动化》2014年第6期132-134,138,共4页Mechanical Engineering & Automation
基 金:中央高校基本科研业务费专项基金资助项目(SWJTU12CX039)
摘 要:为更好地对滚动轴承进行状态监测和故障诊断,采集3种不同状态下的滚动轴承振动信号,根据振动信号特点提取其时域和频域的相关特征,然后分别利用SVM(支持向量机)和BP神经网络进行模式识别。不断减少每种状态下训练样本集的个数,利用2种不同的方法进行模式识别。当每种状态下的样本个数为3个时,支持向量机仍然能准确地将测试样本进行分类,而BP神经网络完全无法识别。实验结果表明,支持向量机比BP神经网络更适合于小样本的故障诊断。In order to make rolling bearing condition monitoring and fault diagnosis better ,three kinds of different states vibration signals of rolling bearing were collected , the features of different states' vibration signals in time and frequency domain were extracted .The support vector machine(SVM) and BP neural network was used to conduct the pattern recognition .In the case of decreasing the number of training samples in each state ,two methods were applied to pattern recognition .When the number of samples in each state was 3 ,the SVM was still able to classify the test samples accurately ,but the BP neural network could’t identify completely .Experimental results show that SVM is more suitable for small samples in fault diagnosis than BP neural network .
分 类 号:TH133.33[机械工程—机械制造及自动化] TH165.3
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145