检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何永平[1] 谢杰华[1] 邹娓[2] 邓方吕 俞勇[1] 施明[2]
机构地区:[1]南昌工程学院经济贸易学院,江西南昌330099 [2]南昌工程学院理学院,江西南昌330099
出 处:《南昌工程学院学报》2015年第1期47-55,63,共10页Journal of Nanchang Institute of Technology
基 金:Supported by Natural Science Foundation of Jiangxi Province(No.20132BAB211010;No.20142BAB211015);Innovation Foundation of Jiangxi Provincial Department of Education,Research Training Program of Nanchang Institute of Technology;"Challenge Cup" Academic Science and Technology Work Competition of Nanchang Institute of Technology~~
摘 要:建立了一类推广的延迟索赔风险模型,模型中索赔延迟发生与否取决于之前的索赔额大小.通过所建立的微积分方程系统,得出了该风险模型生存概率Laplace变换的表达式,并计算出了生存概率所满足的瑕疵更新方程.在索赔额为Kn-分布的情形下,得到了生存概率的精确表达式.In this paper,we consider a generalization of the delayed claims risk model to a dependent setting,where the occurrences of delayed claims depend on the previous claim sizes. Both of the non-ruin probabilities with zero initial surplus and the Laplace transforms of the non-ruin probabilities are obtained from an integro-differential equations system. Then,using the Laplace transform,we prove that the non-ruin probability satisfies a defective renewal equation. Explicit formulas of non-ruin probabilities are derived when both claim size distributions belong to the Kn-family,n ∈ N+.
关 键 词:复合POISSON风险模型 相依索赔 生存概率 LAPLACE变换 Kn-分布
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30