基于ESO迭代学习算法的故障估计  被引量:4

Fault estimation method based on ESO iteration learning algorithm

在线阅读下载全文

作  者:齐晓慧[1] 王俭臣[1] 单甘霖[2] 

机构地区:[1]军械工程学院无人机工程系,石家庄050003 [2]军械工程学院电子与光学工程系,石家庄050003

出  处:《控制与决策》2015年第3期546-550,共5页Control and Decision

基  金:国防预研基金项目(513270203);武器装备预研重点基金项目(9140A27020211JB3402)

摘  要:针对基于迭代学习的故障估计器方法,提出一种基于扩张状态观测器(ESO)思想的迭代学习算法,以提高虚拟故障的收敛速度.该算法将ESO的输出误差非线性反馈机制用于迭代学习过程,利用故障估计器当前输出残差的非线性函数修正下次迭代时的虚拟故障值.对所建立的故障估计器的收敛性进行理论分析,并在此基础上进行了仿真实验.仿真结果表明,所提出的算法具有良好的收敛速度和故障估计精度.For the fault estimator based on the iterative learning theory, an iterative learning algorithm based on the extended states observer(ESO) is proposed to improve the convergence speed of the virtual fault. In this algorithm, the nonlinear feedback mechanism of the ESO is transplanted to iterative learning processes, that is, the nonlinear function of the current output residual is used to adjust the value of the virtual fault in the next iteration. The theoretical convergence analysis of the proposed fault estimator is proven, based on which some simulation experiments are conducted. The obtained results show the favorable convergence speed and the fault estimation precision of the proposed method.

关 键 词:迭代学习 故障估计 扩张状态观测器 虚拟故障 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象