航班预定口语对话系统的设计与实现  

Design and implementation of mandarin spoken dialogue system for flight reservation

在线阅读下载全文

作  者:陈振锋[1,2] 杨晓昊[3] 吴蔚澜 刘加[3] 夏善红[2] 

机构地区:[1]中国科学院电子学研究所传感技术国家重点实验室,北京100190 [2]中国科学院大学,北京100190 [3]清华大学电子工程系清华信息科学与技术国家实验室,北京100084

出  处:《中国科学院大学学报(中英文)》2015年第2期252-258,共7页Journal of University of Chinese Academy of Sciences

基  金:国家自然科学基金(61005019;61273268;90920302);北京市自然科学基金(KZ201110005005)资助

摘  要:介绍一个航班预定口语对话系统的设计与实现,该系统允许用户通过普通话进行航班信息查询与预定.重点介绍口语对话系统中的口语语言理解.为了克服语音识别引入的识别错误导致语义理解错误的问题,提出基于词混淆网络的两阶段中文口语语言理解方法:首先从词混淆网络中选择N元文法作为分类特征,进行主题分类,并通过语义分类模型解析获取对应的语义树结构;然后利用基于规则的语义槽填充器抽取相应的语义槽属性-值.该方法是数据驱动的,训练数据的标记比较容易.实验在汉语航班预定领域进行,结果表明,在语音识别字错误率很高的情况下,该方法比传统的基于语法规则的语言理解方法更加鲁棒,在语义理解正确率方面有明显改善.We present a spoken dialogue system for flight reservation,which allows users to inquire information about flight in mandarin. We describe the design and the implementation of our system,focusing on spoken language understanding( SLU). Considering that the speech recognizer inevitably makes errors,we propose a new two-stage mandarin SLU approach based on word confusion network. Firstly,the semantic tuple classifier is used to identify the topic of an input utterance using N-gram features extracted from the word confusion network and to parse a semantic tree by recursively calling semantic classification models. Then the rule-based semantic slot filler is used to extract the corresponding slot / value pairs. The advantage of the proposed approach is that it is mainly data-driven and requires minimally annotated corpus for training. Experiment has been carried out in the Chinese flight reservation domain,which shows that the proposed approach is more robust to speech recognition errors than the conventional handcrafted rule-based parser, and substantially improves performance of accuracy when the ASR word error rate is high.

关 键 词:口语对话系统 口语语言理解 语义理解 词混淆网络 对话管理 

分 类 号:TN912.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象