从常量数学到变量数学——从微积分思想获得的启示  被引量:1

在线阅读下载全文

作  者:王华[1] 

机构地区:[1]太原生态工程学校

出  处:《数学学习与研究》2015年第5期17-18,20,共3页

摘  要:高等数学中的微积分思想,是从常量数学到变量数学的必经之路,对培养学生的思维素质、创新能力起十分重要的作用.本文从牛顿、莱布尼兹创立的微积分思想获得启示,把握了微元法是将变量问题转化为常量问题进行处理的核心思想,并引入解析几何笛卡尔坐标概念,为工程技术中涉及与变量相关的许多几何、物理定积分应用问题提供了一种方法和思路.作为算例,对物理学中的变速运动物体的动能和转动惯量的计算问题应用微元法进行了求解,方法简洁、通用.

关 键 词:微积分 微元法 极限 

分 类 号:O172-4[理学—数学] G642[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象