检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宝帅[1] 杜兰[1] 张学峰[1] 王旭[1] 刘宏伟[1]
机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071
出 处:《电波科学学报》2014年第6期1016-1021,1044,共7页Chinese Journal of Radio Science
基 金:国家自然科学基金(No.61271024;61201296;61322103);全国优秀博士学位论文作者专项资金资助项目(FANEDD-201156)
摘 要:针对低信噪比条件下微多普勒调制易被噪声污染的问题,提出了一种基于复数域概率主成分分析(Complex Probabilistic Principal Component Analysis,CPPCA)模型的噪声稳健分类算法来实现低分辨雷达体制下三类飞机目标(喷气式飞机、螺旋桨飞机和直升机)的分类.算法依据三类飞机多普勒谱调制的差异,提出两维反映这种差异的微动特征.为了提高微动特征在低信噪比条件下的分类性能,利用CPPCA模型对雷达复回波信号建模并结合Akaike信息量准则(Akaike’s Information Criterion,AIC)来自适应地确定回波中主成分的个数从而实现对数据的噪声抑制.基于实测数据的实验结果表明,该算法在较低信噪比条件下能够获得较好的噪声抑制和分类性能.A robust classification scheme to categorize airplane targets into three kinds, i. e. , turbojet aircraft, prop aircraft and helicopter, by using the conventional low-resolution radar system is proposed aiming to solve the problem that the micro-Doppler modulation is con- taminated easily by the noise component under the low singal to noise ratio(SNR) cases. Based on the different characteristics of the micro-Doppler modulation of the three kinds of airplane, this classification scheme firstly extracts two dimensional feature vectors to depict these differ- ences. In order to elevate the classification performance under the low SNR cases, we utilize the Complex Probabilistic Principal Component Analysis (CPPCA) to model the complex-val- ued echo from the airplane targets. The Akaike^s Information Criterion (AIC) is applied to the CPPCA model to determine the number of principal components adaptively for denoising the returned echo. The experimental results on measured data indicate that the proposed method can achieve the good noise reduction and classification performances under the test condition of relatively low SNR.
关 键 词:复数域概率主成分分析 噪声稳健 微多普勒效应 AIC 特征提取
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28