检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭婷婷[1]
出 处:《中北大学学报(自然科学版)》2015年第2期118-121,125,共5页Journal of North University of China(Natural Science Edition)
基 金:山西大学商务学院科研项目(2013025)
摘 要:对(2+1)维KdV方程进行研究,基于Wronskian行列式和Hirota双线性方法,应用行列式的性质,给出(2+1)维KdV方程Wronskian表示的孤子解.利用Hirota方法,在(2+1)维KdV方程经典孤子解的基础上,得出方程新的单孤子解.通过观察Wronskian行列式元素的特征并分析所满足的色散关系,重新定义行列式元素,利用Hirota方法和Wronskian技巧,构造出新的2 N阶Wronskian行列式解,并应用行列式恒等式说明双线性型的孤子方程有Wronskian解.通过直接计算证明了两种新解的一致性.The (2+1)dimensional KdV equation was researched,based on Wronskian determinant and Hirota method,soliton solutions of the (2 +1)dimensional KdV equation in the Wronskian form were derived by using determinant properties.On the basis of the classical soliton solutions of the (2+1)di-mensional KdV equation,the new one-soliton solution was obtained through Hirota method.Based on observing the features of the Wronskian determinant elements and analyzing the dispersion relation,de-terminant elements were then re-defined and new 2N-order Wronskian determinant solutions were con-structed by Hirota method and Wronskian technique.It is shown that the Wronskian solutions are the solutions of the bilinear form of the soliton equations by determinant identical equation.The consistency of the two kinds of solutions was proved by calculation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200