基于计算机视觉的循环水养殖系统残饵识别研究  被引量:15

Research on the residual feeds recognition of recirculating aquaculture systems based on computer vision

在线阅读下载全文

作  者:穆春华[1,2] 范良忠[2] 刘鹰[3] 

机构地区:[1]太原科技大学电子信息工程学院,太原030024 [2]浙江大学宁波理工学院信息与工程学院,宁波315100 [3]中国科学院海洋研究所,青岛266071

出  处:《渔业现代化》2015年第2期33-37,共5页Fishery Modernization

基  金:国家自然科学基金项目"基于计算机视觉的鱼类异常行为建模与识别研究(31302231)";浙江省教育厅科研项目"封闭循环水养殖系统鱼类异常行为建模(Y201226043)";宁波市自然科学基金项目"基于计算机视觉的大黄鱼行为研究(2012A610110)"

摘  要:利用计算机视觉技术和机器学习方法研究工业化循环水养殖的残饵与粪便的识别问题,为基于残饵浓度检测的智能投喂系统提供理论依据。首先对残饵视频进行图像预处理,分割出残饵和粪便图像;然后根据残饵和粪便在灰度分布和形状上的差异,提取平均灰度,周长平方面积比、凸壳面积比、骨架数、对比度、逆差距6个特征;再分别运用4种不同核函数的支持向量机(SVM)算法和改进的决策树算法进行残饵图像识别。结果显示,径向基核函数的SVM算法识别效果最好,残饵和粪便识别率分别达到99%和97%以上;改进离散方式的决策树算法识别率与SVM算法的识别率接近,并且实时性更好。The paper mainly researches the residual feeds and feces recognition of recirculating aquaculture systems by using the computer vision technology and the machine learning methods, which provides a theory basis for intelligent feeding system based on residual feeds concentration detection. At first, the residual feeds and impurity images were obtained by preprocessing the residual feeds video record. Then, the features were extracted by analyzing the difference between residual feeds and feces in gray level distribution and shape. The features inelude:AverPixel, Peri2Area, Conv2Area, Skeletons, Contrast and IDM. Finally, we realized the recognition of residual feeds image by using the support vector machine algorithm based on 4 different kinds of kernel function and the modified decision tree algorithm. Experimental results showed the SVM based on the radial basis kernel obtained the best recognition rate. And the recognition rate of residual feeds and feces were up to 99% and 97% respectively. The recognition rate of decision tree with modified discrete way is close to the SVM's. and the real^time oerformance is better.

关 键 词:工业化循环水养殖 计算机视觉 决策树 支持向量机 残饵识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象