Numerical Integration for DAEs of Multibody System Dynamics  

Numerical Integration for DAEs of Multibody System Dynamics

在线阅读下载全文

作  者:GENG Guo-zhi LIU Jian-wen DING Jie-yu 

机构地区:[1]College of Information Engineering, Qingdao University

出  处:《科技视界》2015年第15期12-13,24,共3页Science & Technology Vision

基  金:National Natural Science Foundation of China(11272166,11472143,11472144)

摘  要:During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.

关 键 词:数值积分 多体系动力学 科学研究 微分代数 

分 类 号:O241.4[理学—计算数学] G301[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象