检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:GENG Guo-zhi LIU Jian-wen DING Jie-yu
机构地区:[1]College of Information Engineering, Qingdao University
出 处:《科技视界》2015年第15期12-13,24,共3页Science & Technology Vision
基 金:National Natural Science Foundation of China(11272166,11472143,11472144)
摘 要:During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249