检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓生华[1]
机构地区:[1]中山学院,广东中山528402
出 处:《西南师范大学学报(自然科学版)》2002年第4期465-467,共3页Journal of Southwest China Normal University(Natural Science Edition)
摘 要:设B为有单位元e的Banach代数且‖e‖ =1,A为B的闭理想 .定义了A的Riesz扩张R并证明了(1)R是B的半理想 ;(2 )R =∩L∈ {L}L ALr,其中 {L}为B的极大左 ,右理想全体 ,Lr 为L的Riesz扩张 ;(3)A +Q =(A +∩L∈ {L}L ALr)∩R 。Let B is a Banach algbra with a unite e such that ‖e‖ =1. The Riesz extension R of a closed ideal A in the B was elefined, and the theory was proved that (1) R is a semi ideal of B . (2) R=∩ L∈{L} LAL r , where { L } is the totality of the maximal left or right ideal of B , L\-r is the Riesz extension of L . (3) A+Q=(A+∩ L∈{L} LAL\-r)∩R, where Q is the tolality of generalized nipotent of B .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13