检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青海民族大学蒙学系,青海西宁810007 [2]青海师范大学数学系,青海西宁810008
出 处:《西北大学学报(自然科学版)》2015年第3期345-351,共7页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金资助项目(10861009;10761008);青海省自然科学基金资助项目(2011-Z-911)
摘 要:设Pn和Cn是具有n个顶点的路和圈,Sn是n个顶点的的星图,n G表示n个图G的无公共点的并。当m≥3是奇数时,图PSm+2-1(m+1)r是表示把2-1(m+1)Sr+1的每个分支的r度顶点分别与Pm的下标为奇数的2-1(m+1)个顶点重迭后得到的图,把图PS(2m+1)+(m+1)r中的两个r+1度顶点与2P3中的每个分支的一个2度点分别重迭后所得到的图为Ψ*(2,2,(2m+1)+(m+1)r),当m≥3是偶数时的此图记为Ψ*(2,2,(2m+1)+mr)。运用图的伴随多项式的性质,讨论了图簇Ψ*(2,2,(2m+1)+(m+1)r)∪K1和Ψ*(2,2,(2m+1)+mr)∪Sr+1的伴随多项式的因式分解式,若m=2kq-1,λn=(2nq-1)+2n-1qr,讨论了图簇Ψ*(2,2,λn)和Ψ*(2,2,λn)∪(n-1)K1的伴随多项式的因式分解式,进而证明了这些图的补图的色等价性。Let Pn be a path with n ,Jertices and let Gn be a cycle with n vertices, and Sn be a star with n verti-ces, and nG be the union of n graphs G without common vertex. Let m ≥ 3 be odd, and let denote by pSm +2 -1(m + 1)r the graph consisting of 2 - 1 ( m + 1 ) Sr+ 1 and Pm by coinciding the vertex of degree r of every com- ponent of 2 -1 ( m + 1 ) Sr + 1 with 2 -1 ( m + 1 ) vertices of Pm which subscript be odd, respectively ; and let de- note by ψ* (2,2, (2m + 1 ) + (m + 1 )r) the graph consisting of Ps(2m+1) +(m+1)r and 2P3 by coinciding two ver- tices of degree r + 1 of Ps(2m +1) + (m +1)r with the vertex of degree 2 of every component of 2P3 , and let denote by ψ* (2,2, (2m + 1 ) + mr) the graph as m is even. By using the properties of adjoint polynomials of graphs and natural number m is odd or even, to discuss the factorizations of adjoint polynomials of graphs ψ* (2,2, (2m +1) + (m +1)r) UK1 and ψ* (2,2,(2m +1) +mr)USr+1, if m =2kq -1, let An = (2nq -1) +2n-1 qr, and the factorizations of adjoint polynomials of graphs ψ* ( 2,2, λ n ) and ψ* ( 2,2,λn ) U ( n - 1 ) K1 , fur- ther, proving chromatically the equivalence of complements of these graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.156.171