检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北财经大学数学与数量经济学院,辽宁大连116025
出 处:《中国管理科学》2015年第6期49-56,共8页Chinese Journal of Management Science
基 金:国家自然科学基金面上项目(71171035);辽宁省教育厅人文社会科学重点研究基地专项项目(ZJ2013039)
摘 要:日内效应在金融高频数据研究中已被广泛证实,是一种日内周期性运动的动态效应,它影响了以微观金融指标为参数的计量模型的准确估计。基于金融超高频持续期数据,本文首先论述了日内效应调整的重要性,然后引入自适应映射(SOM)的方法对日内效应进行调整。SOM是一种基于神经网络学习的特征提取方法,能够动态识别高维数据中的结构特征,克服了静态调整方法的不足。最后通过建立基于自回归条件持续期模型(ACD)的蒙特卡罗模拟实验,比较了三种日内效应调整方法的效果。模拟结果表明SOM方法在日内效应调整中更为有效和稳定,特别适合大数据条件下的周期性结构分析。Intra-day periodicity has been widely found in financial high frequency data study. It is a dynamic effect characterized by intra-day periodic motion and it affects the accuracy of econometric model estimation which contains intra-day financial variables. The importance of intra-day periodic adjustment is discussed firstly in this study and then introduces self-organizing maps as a intra-day periodic adjustment solution are introduced based on financial ultra high frequency duration data. The SOM method is a feature extraction on the basis of neural network learning which can recognize the dynamic feature in high-dimensional data in order to overcome the disadvantage of static periodic adjustment. Finally a monte carlo simulation through autoregressive conditional duration model is built to compare the effects of three intra-day periodic adjust- ment methods. The result shows that the SOM method performs more effective and stable. Therefore SOM method can be particularly suited for analysis of periodic structure in big data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.138.59