检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李少毅[1] 梁爽[2] 张凯[1] 董敏周[1] 闫杰[1]
机构地区:[1]西北工业大学航天学院,西安710072 [2]空军工程大学理学院,西安710051
出 处:《电子与信息学报》2015年第7期1639-1645,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60974149);航天科技创新基金(CASC201104)资助课题
摘 要:目前压缩测量的应用研究主要集中在重构图像方面,但是很多应用中最终目的是检测和跟踪。直接基于压缩测量的检测和跟踪问题尚未解决。该文首次建立一种压缩域到空间域的映射模型,并提出一种无需重构任何图像且直接从低维压缩测量中经解码进行目标跟踪的方法,并分析其应用于天基红外探测的可能性。该方法利用Hadamard测量矩阵构建红外压缩成像系统,采用自适应压缩背景差分法从低维压缩测量信息中分离背景和前景,再从压缩前景信息中解码目标空间位置,并结合数据关联和Kalman滤波算法解决了杂波环境下点目标跟踪问题。理论分析和仿真实验结果表明,该方法能利用少量压缩测量实现目标跟踪任务,并减小探测器规格及相关算法的计算复杂度和存储代价。Currently the application research of compressive measurements is still focused on the image recovery, but the ultimate purpose is a task of target detection and tracking in many special applications. And the issue performing target detection and tracking based on compressive measurements is not yet solved. The mapping model is firstly exploited to locate the target in the spatial domain through the measurements in the compressive domain. Further, a method tracking point targets through decoding targets location in the low-dimensional compressive measurements without reconstructed image is proposed for the possible application in space based infrared detection. The method uses the Hadamard matrix to design infrared compressive imaging system, and separates the background and foreground image from adaptive compressive background subtraction. With the the low-dimensional compressive measurements by the mapping relation from the compressive domain into the spatial domain, the target location is possibly decoded. Then the task of point target tracking in the clutter environment can be done by the associated data association and Kalman filtering algorithm. The theoretical analysis and numerical simulations demonstrate the approach proposed is able to accomplish a task of target tracking only by using less compressive measurements, and reduce detector scale, computation complexity and storage cost.
关 键 词:目标跟踪 数据关联 KALMAN滤波 压缩成像 压缩背景差分
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30